RocketTheme

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: например, равносторонней гиперболы, параболы второй степени и др.

Различают два класса нелинейных регрессий:

  • регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;
  • регрессии, нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включаемым в нее объясняющим переменным могут служить следующие функции:

·         полиномы разных степеней у = а + + с2 + ε,

                               у =а + +сх +dx3+ ε,

 

  • равносторонняя гипербола Нелинейная регрессия. Методы линеаризации.

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

  • степенная y = axbε

 

  • показательная у = аbх ε
  • экспоненциальная y=ea+bxε

Приведение к линейному виду регрессий, нелинейных по объясняющим переменным

Нелинейная регрессия по включенным переменным не таит каких-либо сложностей в оценке ее параметров. Она определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени

у= а0 + а1 х + а2 х2 + ε

заменяя переменные х1 =х, х2 = х2, получим двухфакторное уравнение линейной регрессии:

у= а0 + а1 х1 + а2 х2 + ε

для оценки параметров которого, как будет показано далее, используется МНК.

Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез.

Среди класса нелинейных функций, параметры которых без особых затруднений оцениваются МНК, следует назвать хорошо известную в эконометрике равностороннюю гиперболу

Нелинейная регрессия. Методы линеаризации.

Для равносторонней гиперболы такого вида, заменив Нелинейная регрессия. Методы линеаризации.на z, получим линейное уравнение регрессии y = a +bz +ε оценка параметров которого может быть дана МНК.

Она может быть использована не только для характеристики связи удельных расходов сырья,материалов,топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота, т.е. на микроуровне, но и на макроуровне. Классическим ее примером является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы х и процентом прироста заработной платы у.

В отдельных случаях может использоваться и нелинейная модель вида

Нелинейная регрессия. Методы линеаризации.

так называемая обратная модель, являющаяся разновидностью гиперболы Но, если в равносторонней гиперболе преобразованию подвергается объясняющая переменная z = 1/x и y = а + bz + ε, то для получения линейной формы зависимости в обратной модели преобразовывается у, а именно: z =1/y и z = a + bx +ε.

В результате обратная модель оказывается внутренне нелинейной и требование МНК выполняется не для фактических значений признака у, а для их обратных величин 1, а именно

Нелинейная регрессия. Методы линеаризации.

следовательно полученная методом наименьших квадратов оценка уже не будет эффективной.

Приведение к линейному виду регрессий, нелинейных по параметрам

Данный класс нелинейных моделей подразделяется на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные.

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду.

Если нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:

y = axbε

где у – спрашиваемое количество;

х – цена;

ε – случайная ошибка.

Данная модель нелинейна относительно оцениваемых пaраметров, ибо включает параметры а и b неаддитивно. Однако ее можно считать внутренне линейной, ибо логарифмирование данного уравнения по основанию е приводит его к линейному виду:

lпу = lпа + b lnx + ln ε.

Соответственно оценки параметров а и b могут быть найдены МНК.

Если же модель представить в виде y = axbε, то она становится внутренне нелинейной, ибо ее невозможно превратить в линейный вид. Внутренне нелинейной будет и модель вида — у = а + bхc + ε, ибо это уравнение не может быть преобразовано в уравнение, линейное по коэффициентам.

В специальных исследованиях по регрессионному анализу часто к нелинейным относят модели, только внутренне нелинейные по оцениваемым параметрам, а все другие модели, которые внешне нелинейны, но путем преобразований параметров могут быть приведены к линейному виду, относятся к классу линейных моделей.

В этом плане к линейным относят, например, экспоненциальную модель y = еa+bхε, ибо логарифмируя ее по натуральному основанию, получим линейную форму модели

lnу = а + b х +lnε.

Среди нелинейных функций, которые могут быть приведены к линейному виду, в эконометрических исследованиях очень широко используется степенная функция y = axbε.

Связано это с тем, что параметр b в ней имеет четкое экономическое истолкование, т. е. он является коэффициентом эластичности. Это значит, что величина коэффициента b показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1%.

В моделях, нелинейных по оцениваемым параметрам, но приводимых к линейному виду, МНК применяется к преобразованным уравнениям.

Если в линейной модели и моделях, нелинейных по переменным, при оценке параметров исходят из критерия

Нелинейная регрессия. Методы линеаризации.,

то в моделях, нелинейных по оцениваемым параметрам, требование МНК применяется не к исходным данным результативного признака, а к их преобразованным величинам, т. е. lпу, 1.

Так, в степенной функции y = axbε МНК применяется к преобразованному уравнению lпу = lnа + xlnb.

Это значит, что оценка параметров основывается на минимизации суммы квадратов отклонений в логарифмах:

Нелинейная регрессия. Методы линеаризации.

Вследствие этого оценки параметров для линеаризуемых функций МНК оказываются несколько смещенными. При исследовании взаимосвязей среди функций, использующих ln у, в эконометрике преобладают степенные зависимости – это и кривые спроса и предложения, и кривые Энгеля, и производственные функции, и кривые освоения для характеристики связи между трудоемкостью продукции и масштабами производства в период освоения выпуска нового вида изделий, и зависимость валового национального дохода от уровня занятости.